Permeabilizing cell membranes with electric fields

Alondra A. Aguilar, Michelle C. Ho, Edwin Chang, Kristen W. Carlson, Arutselvan Natarajan, Tal Marciano, Ze’Ev Bomzon, Chirag B. Patel

Research output: Contribution to journalReview articlepeer-review

30 Scopus citations

Abstract

The biological impact of exogenous, alternating electric fields (AEFs) and direct-current electric fields has a long history of study, ranging from effects on embryonic development to influences on wound healing. In this article, we focus on the application of electric fields for the treatment of cancers. In particular, we outline the clinical impact of tumor treating fields (TTFields), a form of AEFs, on the treatment of cancers such as glioblastoma and mesothelioma. We provide an overview of the standard mechanism of action of TTFields, namely, the capability for AEFs (e.g., TTFields) to disrupt the formation and segregation of the mitotic spindle in actively dividing cells. Though this standard mechanism explains a large part of TTFields’ action, it is by no means complete. The standard theory does not account for exogenously applied AEFs’ influence directly upon DNA nor upon their capacity to alter the functionality and permeability of cancer cell membranes. This review summarizes the current literature to provide a more comprehensive understanding of AEFs’ actions on cell membranes. It gives an overview of three mechanistic models that may explain the more recent observations into AEFs’ effects: the voltage-gated ion channel, bioelectrorheological, and electropora-tion models. Inconsistencies were noted in both effective frequency range and field strength between TTFields versus all three proposed models. We addressed these discrepancies through theoretical in-vestigations into the inhomogeneities of electric fields on cellular membranes as a function of disease state, external microenvironment, and tissue or cellular organization. Lastly, future experimental strategies to validate these findings are outlined. Clinical benefits are inevitably forthcoming.

Original languageEnglish (US)
Article number2283
JournalCancers
Volume13
Issue number9
DOIs
StatePublished - May 1 2021
Externally publishedYes

Keywords

  • Alternating electric fields (AEFs), bioelectrorheology
  • Cancer
  • Cell membrane
  • Cell model-ing
  • Electroporation
  • Glioblastoma
  • Tumor treating fields (TTFields)
  • Voltage-gated ion channel

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Permeabilizing cell membranes with electric fields'. Together they form a unique fingerprint.

Cite this