Pharmacokinetics and biodistribution of near-infrared fluorescence polymeric nanoparticles

Zhi Yang, Jeffrey Leon, Mike Martin, John W. Harder, Rui Zhang, Dong Liang, Wei Lu, Mei Tian, Juri G. Gelovani, Alex Qiao, Chun Li

Research output: Contribution to journalArticlepeer-review

90 Scopus citations

Abstract

There has been increased interest in the use of polymeric nanoparticles as carriers for near-infrared fluorescence (NIRF) dyes for cancer diagnosis. However, efficient delivery of nanoparticles to the tumors after systemic administration is limited by various biobarriers. In this study, we investigated the pharmacokinetics, biodistribution, and tumor uptake of sub-nanometer sized polymeric nanoparticles (<100nm in diameter) coated with polyethylene glycol in tumor-bearing mice. To facilitate our studies, these particles were labeled with gamma emitter indium-111. We found that two NIRF nanoparticles having the same size (∼20nm) and chemical composition but different structures (i.e., hydrogel versus core-shell nanolatex), or the same core-shell nanolatex particles with different sizes (20, 30, and 60nm), had different blood circulation times, biodistribution, and tumor uptake. Interestingly, the tumor uptake of the nanolatex particles correlated well with their blood residence times (R2 = 0.95), but similar correlations were not found between nanogel and nanolatex particles (R2 = 0.05). These results suggest that both the blood circulation time and the extent of hydration of the nanoparticles play an important role in the tumor uptake of nanoparticles. Prolonged blood circulation of these NIRF nanoparticles allowed clear visualization of tumors with γ-scintigraphy and optical imaging after intravenous administration. A better understanding with regard to how the characteristics of nanoparticles influence their in vivo behavior is an important step towards designing NIRF nanoparticles suitable for molecular imaging applications and for efficient tumor delivery.

Original languageEnglish (US)
Article number165101
JournalNanotechnology
Volume20
Issue number16
DOIs
StatePublished - 2009

ASJC Scopus subject areas

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

MD Anderson CCSG core facilities

  • Small Animal Imaging Facility

Fingerprint

Dive into the research topics of 'Pharmacokinetics and biodistribution of near-infrared fluorescence polymeric nanoparticles'. Together they form a unique fingerprint.

Cite this