Physics Considerations for Evaluation of Dose for Dose-Response Models of Pediatric Late Effects From Radiation Therapy

Arthur J. Olch, Peter van Luijk, Chia Ho Hua, Michele Avanzo, Rebecca M. Howell, Ellen Yorke, Marianne C. Aznar, Stephen F. Kry

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Purpose: We describe the methods used to estimate the accuracy of dosimetric data found in literature sources used to construct the Pediatric Normal Tissue Effects in the Clinic (PENTEC) dose-response models, summarize these findings of each organ-specific task force, describe some of the dosimetric challenges and the extent to which these efforts affected the final modeling results, and provide guidance on the interpretation of the dose-response results given the various dosimetric uncertainties. Methods and Materials: Each of the PENTEC task force medical physicists reviewed all the journal articles used for dose-response modeling to identify, categorize, and quantify dosimetric uncertainties. These uncertainties fell into 6 broad categories. A uniform nomenclature was developed for describing the “dosimetric quality” of the articles used in the PENTEC reviews. Among the multidisciplinary experts in the PENTEC effort, the medical physicists were charged with the dosimetric evaluation, as they are most expert in this subject. Results: The percentage dosimetric uncertainty was estimated for each late effect endpoint for all PENTEC organ reports. Twelve specific sources of dose uncertainty were identified related to the 6 broad categories. The most common reason for organ dose uncertainty was that prescribed dose rather than organ dose was reported. Percentage dose uncertainties ranged from 5% to 200%. Systematic uncertainties were used to correct the dose component of the models. Random uncertainties were also described in each report and in some cases used to modify dose axis error bars. In addition, the potential effects of dose binning were described. Conclusions: PENTEC reports are designed to provide guidance to radiation oncologists and treatment planners for organ dose constraints. It is critical that these dose constraint recommendations are as accurate as possible, acknowledging the large error bars for many. Achieving this accuracy is important as it enables clinicians to better balance target dose coverage with risk of late effects. Evidence-based dose constraints for pediatric patients have been lacking and, in this regard, PENTEC fills an important unmet need. One must be aware of the limitations of our recommendations, and that for some organ systems, large uncertainties exist in the dose-response model because of clinical endpoint uncertainty, dosimetric uncertainty, or both.

Original languageEnglish (US)
JournalInternational Journal of Radiation Oncology Biology Physics
DOIs
StateAccepted/In press - 2023

ASJC Scopus subject areas

  • Radiation
  • Oncology
  • Radiology Nuclear Medicine and imaging
  • Cancer Research

Fingerprint

Dive into the research topics of 'Physics Considerations for Evaluation of Dose for Dose-Response Models of Pediatric Late Effects From Radiation Therapy'. Together they form a unique fingerprint.

Cite this