PMA requires JNK1-dependent and -independent signaling modules

R. Gum, J. Juarez, H. Allgayer, A. Mazar, Y. Wang, D. Boyd

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

The urokinase-type plasminogen activator receptor (u-PAR) has been implicated in tumor progression, and previous studies have shown that the expression of this gene is strongly up-regulated by PMA. Although the signaling mechanism by which PMA modulates u-PAR expression is not known, the effect of this phorbol ester on the expression of other genes has been ascribed to activation of the c-Raf-1-ERK signaling pathway. However, in the current study we examined an alternate possibility that the inductive effect of PMA on u-PAR expression also required a JNK1-dependent signaling cascade usually associated with stress-inducing stimuli. PMA treatment of the u-PAR-deficient OVCAR-3 ovarian cancer cells, which contain low JNK activities, resulted in a rapid (5 min) increase in JNK activity. Maximal JNK activity (12-fold induction) occurred after 30 min; this preceding the earliest detected rise in u-PAR protein (2 h). Dose-response studies with PMA also indicated that the increased JNK activity was tightly correlated with elevated u-PAR protein levels. The stimulation of u-PAR promoter activity by PMA required an intact upstream AP-1 motif (-184) and in PMA-treated cells this motif was bound with c-Jun as indicated from mobility shift assays. PMA up-regulated the c-Jun trans acting activity as indicated by the higher activity of a GAL4-regulated luciferase reporter in phorbol-ester-treated cells co-transfected with an expression vector encoding the c-Jun transactivation domain fused to the GAL4 DNA-binding domain. The ability of PMA to stimulate u-PAR promoter activity was effectively titrated out by the co-expression of either a kinase-defective JNK1 or a dominant negative MEKK1 the latter being an upstream activator of JNK1. Conversely, u-PAR promoter activity was stimulated by the co-expression of a constitutively active MEKK1 and this induction was antagonized by the inclusion of the kinase-defective JNK1 plasmid. We also determined the biological significance of the JNK1-dependent signaling cascade in regulating u-PAR promoter activity by c-Ha-ras since this oncogene is activated and/or overexpressed in a variety of tumors including ovarian cancer. Transfection of an activated c-Ha-ras into OVCAR-3 cells stimulated u-PAR promoter activity over 20-fold and this could be countered by the individual expression of dominant negative expression constructs to Rac-1, MEKK1 or JNK1. Taken together, these data suggest that the PMA- or c-Ha-Ras-dependent stimulation of u-PAR gene expression requires a JNK1-dependent signaling module and that, at least for PMA, the concurrent stimulation of a JNK1-independent signaling module is also required. Thus, caution should be exercised in invoking linear signaling modules to account for the regulation of inducible gene expression.

Original languageEnglish (US)
Pages (from-to)213-225
Number of pages13
JournalOncogene
Volume17
Issue number2
DOIs
StatePublished - Jul 16 1998

Keywords

  • JNK
  • MAPK
  • Proteolysis
  • Urokinase receptor

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Cancer Research

Fingerprint

Dive into the research topics of 'PMA requires JNK1-dependent and -independent signaling modules'. Together they form a unique fingerprint.

Cite this