Polymorphisms in genes related to epithelial-mesenchymal transition and risk of non-small cell lung cancer

Kunlin Xie, Yuanqing Ye, Yong Zeng, Jian Gu, Hushan Yang, Xifeng Wu

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

The epithelial-mesenchymal transition (EMT) process is a crucial step for tumor invasion and metastasis. Previous research investigating EMT has mostly focused on its role in cancer progression. Recent studies showed that EMT and EMT-driving transcription factor (EMT-TF) expression are early events in lung cancer pathogenesis, implying a potential association between EMT and lung cancer risk. In this study, we examined whether genetic variants in EMT-related genes are associated with risk of non-small cell lung cancer (NSCLC). We used data from a genome-wide association study of 1482 NSCLC cases and 1544 healthy controls as the discovery phase, in which we analyzed 1602 single-nucleotide polymorphisms (SNPs) within 159 EMT-related genes. We then validated the significant SNPs in another 5699 cases and 5815 controls from the National Cancer Institute lung cancer genome-wide association study. Cumulative effects were evaluated for validated SNPs, and a gene-based test was performed to explore gene-level association with disease risk. In the discovery phase, 174 SNPs demonstrated significant associations with NSCLC risk. In the validation phase, seven SNPs mapped to EGFR, NOTCH3, ADGRF1 and SMAD3 were confirmed. Cumulative effect analysis of the significant SNPs demonstrated increasing risk with the number of unfavorable genotypes in the discovery and validation datasets. Genebased analysis implicated ADGRF1, NOTCH3 and CDH1 as significant for NSCLC risk. Functional prediction revealed several potential mechanisms underlying these associations. Our results suggest that EMT-related gene variants may be involved in susceptibility to NSCLC; if confirmed, they might help identify higher-risk individuals.

Original languageEnglish (US)
Article numberbgx079
Pages (from-to)1029-1035
Number of pages7
JournalCarcinogenesis
Volume38
Issue number10
DOIs
StatePublished - Oct 1 2017

ASJC Scopus subject areas

  • Cancer Research

Fingerprint

Dive into the research topics of 'Polymorphisms in genes related to epithelial-mesenchymal transition and risk of non-small cell lung cancer'. Together they form a unique fingerprint.

Cite this