Preclinical Demonstration of a Novel Treatment with High Efficacy and No Detectable Toxicity for Inflammatory Skin Conditions including Psoriasis

John P. Vanden Heuvel, Shuling Zhou, Anisha B. Patel, Harry N. Kamerow, Peter Baran, John P. Ford

Research output: Contribution to journalArticlepeer-review

Abstract

Although the management options for psoriasis have progressed with the use of systemic agents, there are few efficacious nonsteroidal topical therapies for patients with limited or lower grade disease. The effects of allopurinol (Allo) and glutathione (GSH) were examined in two different in vitro models for psoriasis. In the first model, human immortalized keratinocytes (HaCaT) were treated with M5 cocktail (IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α) in four interventional groups (control, Allo, oxypurinol (Oxy), and methotrexate (MTX)). The number of live and dead cells was determined after treatment for 48 and 72 hrs. Allo decreased cell proliferation (total cells) without increasing cell death compared to both its xanthine oxidase inhibiting metabolite Oxy and a standard agent in clinical use, MTX. In the second model, a human psoriatic skin equivalent (PSE) culture system, cells were treated with vehicle control, Allo and GSH (as monotherapies and in combination), and vitamin D (VitD) for 2 and 6 days followed by histological analysis and altered gene expression. The combined exposure to Allo and GSH was equivalent to a standard antipsoriasis agent VitD in the inhibition of both proliferative and replicative markers. Histologic examination of the tissue at 6 days of exposure to VitD resulted in loss of the integrity of the squamous/epithelial continuity whereas tissue integrity was preserved with Allo and GSH exposure. The additional exposure of GSH to Allo reversed the increased thickness of the dermis layer caused by Allo exposure alone. Taken together, this data shows that topical Allo and GSH may have a synergistic effect with low toxicity and constitute a therapeutic advantage over current nonsteroidal therapies in the treatment of inflammatory skin conditions marked by increased cell proliferation such as psoriasis.

Original languageEnglish (US)
Article number4878774
JournalBioMed research international
Volume2023
DOIs
StatePublished - 2023
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Preclinical Demonstration of a Novel Treatment with High Efficacy and No Detectable Toxicity for Inflammatory Skin Conditions including Psoriasis'. Together they form a unique fingerprint.

Cite this