Quenching correction for volumetric scintillation dosimetry of proton beams

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

Volumetric scintillation dosimetry has the potential to provide fast, high-resolution, three-dimensional radiation dosimetry. However, scintillators exhibit a nonlinear response at the high linear energy transfer (LET) values characteristic of proton Bragg peaks. The purpose of this study was to develop a quenching correction method for volumetric scintillation dosimetry of proton beams. Scintillation light from a miniature liquid scintillator detector was measured along the central axis of a 161.6 MeV proton pencil beam. Three-dimensional dose and LET distributions were calculated for 85.6, 100.9, 144.9 and 161.6 MeV beams using a validated Monte Carlo model. LET values were also calculated using an analytical formula. A least-squares fit to the data established the empirical parameters of a quenching correction model. The light distribution in a tank of liquid scintillator was measured with a CCD camera at all four beam energies. The quenching model and LET data were used to correct the measured light distribution. The calculated and measured Bragg peak heights agreed within ±3% for all energies except 85.6 MeV, where the agreement was within ±10%. The quality of the quenching correction was poorer for sharp low-energy Bragg peaks because of blurring and detector size effects. The corrections performed using analytical LET values resulted in doses within 1% of those obtained using Monte Carlo LET values. The proposed method can correct for quenching with sufficient accuracy for dosimetric purposes. The required LET values may be computed effectively using Monte Carlo or analytical methods. Future detectors should improve blurring correction methods and optimize the pixel size to improve accuracy for low-energy Bragg peaks.

Original languageEnglish (US)
Pages (from-to)261-273
Number of pages13
JournalPhysics in medicine and biology
Volume58
Issue number2
DOIs
StatePublished - Jan 21 2013

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Quenching correction for volumetric scintillation dosimetry of proton beams'. Together they form a unique fingerprint.

Cite this