Radiofrequency circuit design and performance evaluation for small animal frequency-domain NIR fluorescence optical tomography

Chinmay Darne, Banghe Zhu, Yujie Lu, I. Chih Tan, John Rasmussen, Eva M. Sevick-Muraca

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Herein we report on hardware development and evaluation for frequency-domain photon migration (FDPM) technique that is miniaturized for incorporation into a micro-CT gantry for hybrid CT/NIR/PET imaging. Immunity to endogenous optical properties and enhanced contrast associated with fluorophore lifetime is inherent to the FDPM measurements and enables unique opportunities for quantitative tomography when compared to the time independent (continuous wave) approach. A miniaturized radiofrequency (rf) circuitry has been developed in our laboratory for homodyne FDPM measurements that makes use of a single 100MHz oscillator to simultaneously launch optically modulated excitation light into a small animal as well as to modulate an NIR sensitive image intensifier for collection of fluorescent signals. The use of a single oscillator not only eliminates signal drift that otherwise results from the use of multiple oscillators individually driving both source and detector, but also reduces the circuit footprint for incorporation into the CT gantry. Herein, overall system performance parameters of signal-to-noise ratio, measurement precision, spatial resolution, modulation depth (ac/dc), excitation light rejection, and clinically relevant data acquisition times are presented for mouse phantom data. Image reconstruction of phantom data and integration of circuitry for hybrid CT/NIR/PET imaging is also presented towards the ultimate validation of NIR optical tomography using PET imaging as a "gold-standard" for quantification.

Original languageEnglish (US)
Title of host publicationOptical Tomography and Spectroscopy of Tissue IX
DOIs
StatePublished - 2011
EventOptical Tomography and Spectroscopy of Tissue IX - San Francisco, CA, United States
Duration: Jan 23 2011Jan 26 2011

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume7896
ISSN (Print)1605-7422

Conference

ConferenceOptical Tomography and Spectroscopy of Tissue IX
Country/TerritoryUnited States
CitySan Francisco, CA
Period1/23/111/26/11

Keywords

  • fluorescence
  • frequency-domain photon migration
  • near infrared imaging
  • optical tomography
  • radiofrequency
  • small animal imaging

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Radiofrequency circuit design and performance evaluation for small animal frequency-domain NIR fluorescence optical tomography'. Together they form a unique fingerprint.

Cite this