Real-Time Delineation of the Central Sulcus with the Spatial Profile of SSEPs Captured with High-Density Ecog Grid

Priscella Asman, Sujit Prabhu, Sudhakar Tummala, Nuri F. Ince

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Cortical mapping is widely employed to define the sensorimotor area and delineate the central sulcus (CS) during awake craniotomies. The approach involves the gold standard somatosensory evoked potentials (SSEPs) recorded with electrocorticogram (ECoG) strip electrodes. However, the evoked response can be misconstrued from the manual peak interpretation due to the poor spatial resolution of the strip electrode or when the electrode does not precisely cover the desired cortical area. This can lead to unintentional damage to the eloquent cortex. We present a soft real-time computer based visualization system that uses recorded SSEPs with a subdural grid to aid in cortical mapping. The neural data during electrical stimulation of the median nerve at 0.6Hz are picked up with a bio-amplifier at 2.4kHz. The stimulation artifact recorded from the bipolar electromyogram (EMG) is used as the stimulation onset. The ECoG data are assessed online with MATLAB Simulink to process and visualize the SSEPs waveform. The visualization system is programmed to display the SSEPs peak activation as a heat map on a 2D grid and projected onto a screen, showcasing the nature of the cortical activities over the contact surface area. Since the grid occupies a large cortical surface, the heatmap is able to delineate the central sulcus. The map can be viewed at any time point along the SSEP trace without the need for peak interpretation. With the goal to provide additional information during cortical mapping and facilitate interpretation of ECoG grid data, we believe that this visualization system will aid in rapid definition of the sensorimotor area during surgical planning. Clinical Relevance- This real-time visualization system can be used to delineate the central sulcus in a short time during awake craniotomies.

Original languageEnglish (US)
Title of host publication44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4892-4895
Number of pages4
ISBN (Electronic)9781728127828
DOIs
StatePublished - 2022
Event44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, United Kingdom
Duration: Jul 11 2022Jul 15 2022

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2022-July
ISSN (Print)1557-170X

Conference

Conference44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Country/TerritoryUnited Kingdom
CityGlasgow
Period7/11/227/15/22

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Real-Time Delineation of the Central Sulcus with the Spatial Profile of SSEPs Captured with High-Density Ecog Grid'. Together they form a unique fingerprint.

Cite this