RecA acts in trans to allow replication of damaged DNA by DNA polymerase V

Katharina Schlacher, Michael M. Cox, Roger Woodgate, Myron F. Goodman

Research output: Contribution to journalArticlepeer-review

86 Scopus citations

Abstract

The DNA polymerase V (pol V) and RecA proteins are essential components of a mutagenic translesion synthesis pathway in Escherichia coli designed to cope with DNA damage. Previously, it has been assumed that RecA binds to the DNA template strand being copied. Here we show, however, that pol-V-catalysed translesion synthesis, in the presence or absence of the β-processivity- clamp, occurs only when RecA nucleoprotein filaments assemble or RecA protomers bind on separate single-stranded (ss)DNA molecules in trans. A 3′-proximal RecA filament end on trans DNA is essential for stimulation; however, synthesis is strengthened by further pol V-RecA interactions occurring elsewhere along a trans nucleoprotein filament. We suggest that trans-stimulation of pol V by RecA bound to ssDNA reflects a distinctive regulatory mechanism of mutation that resolves the paradox of RecA filaments assembled in cis on a damaged template strand obstructing translesion DNA synthesis despite the absolute requirement of RecA for SOS mutagenesis.

Original languageEnglish (US)
Pages (from-to)883-887
Number of pages5
JournalNature
Volume442
Issue number7105
DOIs
StatePublished - Aug 24 2006
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'RecA acts in trans to allow replication of damaged DNA by DNA polymerase V'. Together they form a unique fingerprint.

Cite this