Redox regulation of cell survival

Dunyaporn Trachootham, Weiqin Lu, Marcia A. Ogasawara, Nilsa Rivera Del Valle, Peng Huang

Research output: Contribution to journalReview articlepeer-review

1457 Scopus citations

Abstract

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulation of cell survival. In general, moderate levels of ROS/RNS may function as signals to promote cell proliferation and survival, whereas severe increase of ROS/RNS can induce cell death. Under physiologic conditions, the balance between generation and elimination of ROS/RNS maintains the proper function of redox-sensitive signaling proteins. Normally, the redox homeostasis ensures that the cells respond properly to endogenous and exogenous stimuli. However, when the redox homeostasis is disturbed, oxidative stress may lead to aberrant cell death and contribute to disease development. This review focuses on the roles of key transcription factors, signal-transduction pathways, and cell-death regulators in affecting cell survival, and how the redox systems regulate the functions of these molecules. The current understanding of how disturbance in redox homeostasis may affect cell death and contribute to the development of diseases such as cancer and degenerative disorders is reviewed. We also discuss how the basic knowledge on redox regulation of cell survival can be used to develop strategies for the treatment or prevention of those diseases.

Original languageEnglish (US)
Pages (from-to)1343-1374
Number of pages32
JournalAntioxidants and Redox Signaling
Volume10
Issue number8
DOIs
StatePublished - Aug 1 2008

ASJC Scopus subject areas

  • Physiology
  • Biochemistry
  • Molecular Biology
  • Clinical Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Redox regulation of cell survival'. Together they form a unique fingerprint.

Cite this