Responseto BRAF inhibitionin Melanoma is enhanced when combined with immune checkpoint blockade

Zachary A. Cooper, Vikram R. Juneja, Peter T. Sage, Dennie T. Frederick, Adriano Piris, Devarati Mitra, Jennifer A. Lo, F. Stephen Hodi, Gordon J. Freeman, Marcus W. Bosenberg, Martin McMahon, Keith T. Flaherty, David E. Fisher, Arlene H. Sharpe, Jennifer A. Wargo

Research output: Contribution to journalArticlepeer-review

208 Scopus citations

Abstract

BRAF-targeted therapy results in objective responses in the majority of patients; however, the responses are short lived (∼6 months). In contrast, treatment with immune checkpoint inhibitors results in a lower response rate, but the responses tend to be more durable. BRAF inhibition results in a more favorable tumor microen-vironment in patients, with an increase in CD8 T-cell infiltrate and a decrease in immunosuppressive cytokines. There is also increased expression of the immunomodulatory molecule PDL1, which may contribute to the resistance. On the basis of these findings, we hypothesized that BRAF-targeted therapy may synergize with the PD1 pathway blockade to enhance antitumor immunity. To test this hypothesis, we developed a BRAF(V600E)/Pten syngeneic tumor graft immunocompetent mouse model in which BRAF inhibition leads to a significant increase in the intratumoral CD8+ T-cell density and cytokine production, similar to the effects of BRAF inhibition in patients. In this model, CD8+ T cells were found to play a critical role in the therapeutic effect of BRAF inhibition. Administration of anti-PD1 or anti-PDL1 together with a BRAF inhibitor led to an enhanced response, significantly prolonging survival and slowing tumor growth, as well as significantly increasing the number and activity of tumor-infiltrating lymphocytes. These results demonstrate synergy between combined BRAF-targeted therapy and immune checkpoint blockade. Although clinical trials combining these two strategies are ongoing, important questions still remain unanswered. Further studies using this new melanoma mouse model may provide therapeutic insights, including optimal timing and sequence of therapy.

Original languageEnglish (US)
Pages (from-to)643-654
Number of pages12
JournalCancer Immunology Research
Volume2
Issue number7
DOIs
StatePublished - Jul 2014

ASJC Scopus subject areas

  • Immunology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Responseto BRAF inhibitionin Melanoma is enhanced when combined with immune checkpoint blockade'. Together they form a unique fingerprint.

Cite this