Roles of CaMKII, PKA, and PKC in the Induction and Maintenance of LTP of C-Fiber-Evoked Field Potentials in Rat Spinal Dorsal Horn

Hong Wei Yang, Xiao Dong Hu, Hong Mei Zhang, Wen Jun Xin, Ming Tao Li, Tong Zhang, Li Jun Zhou, Xian Guo Liu

    Research output: Contribution to journalArticlepeer-review

    103 Scopus citations

    Abstract

    Long-term potentiation (LTP) of C-fiber-evoked field potentials in spinal dorsal horn may be relevant to hyperalgesia, an increased response to noxious stimulation. The mechanism underlying this form of synaptic plasticity is, however, still unclear. Considerable evidence has shown that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase A (PKA), and protein kinase C (PKC) are important for LTP in hippocampus. In this study, the roles of these three protein kinases in the induction and maintenance of LTP of C-fiber-evoked field potentials were evaluated by application of specific inhibitors of CaMKII (KN793 and AIP), PKA (Rp-CPT-cAMPS), and PKC (chelerythrine and Gö 6983) at the recording segments before and after LTP induction in urethane-anesthetized Sprague-Dawley rats. We found both KN-93 and AIP, when applied at 30 min prior to tetanic stimulation, completely blocked LTP induction. At 30 min after LTP induction, KN-93 and AIP reversed LTP completely, and at 60 min after LTP induction, they depressed spinal LTP in most rats tested. Three hours after LTP induction, however, KN-93 or AIP did not affect the spinal LTP. Rp-CPT-cAMPS, chelerythrine, and Gö 6983 blocked the spinal LTP when applied at 30 min before tetanic stimulation and reversed LTP completely at 15 min after LTP induction. In contrast, at 30 min after LTP induction, the drugs never affected the spinal LTP. These results suggest that activation of CaMKII, PKA, and PKC may be crucial for the induction and the early-phase but not for the late-phase maintenance of the spinal LTP.

    Original languageEnglish (US)
    Pages (from-to)1122-1133
    Number of pages12
    JournalJournal of Neurophysiology
    Volume91
    Issue number3
    DOIs
    StatePublished - Mar 2004

    ASJC Scopus subject areas

    • General Neuroscience
    • Physiology

    Fingerprint

    Dive into the research topics of 'Roles of CaMKII, PKA, and PKC in the Induction and Maintenance of LTP of C-Fiber-Evoked Field Potentials in Rat Spinal Dorsal Horn'. Together they form a unique fingerprint.

    Cite this