Screening hydrogels for antifibrotic properties by implanting cellularly barcoded alginates in mice and a non-human primate

Sudip Mukherjee, Boram Kim, Lauren Y. Cheng, Michael David Doerfert, Jiaming Li, Andrea Hernandez, Lily Liang, Maria I. Jarvis, Peter D. Rios, Sofia Ghani, Ira Joshi, Douglas Isa, Trisha Ray, Tanguy Terlier, Cody Fell, Ping Song, Roberto N. Miranda, Jose Oberholzer, David Yu Zhang, Omid Veiseh

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Screening implantable biomaterials for antifibrotic properties is constrained by the need for in vivo testing. Here we show that the throughput of in vivo screening can be increased by cellularly barcoding a chemically modified combinatorial library of hydrogel formulations. The method involves the implantation of a mixture of alginate formulations, each barcoded with human umbilical vein endothelial cells from different donors, and the association of the identity and performance of each formulation by genotyping single nucleotide polymorphisms of the cells via next-generation sequencing. We used the method to screen 20 alginate formulations in a single mouse and 100 alginate formulations in a single non-human primate, and identified three lead hydrogel formulations with antifibrotic properties. Encapsulating human islets with one of the formulations led to long-term glycaemic control in a mouse model of diabetes, and coating medical-grade catheters with the other two formulations prevented fibrotic overgrowth. High-throughput screening of barcoded biomaterials in vivo may help identify formulations that enhance the long-term performance of medical devices and of biomaterial-encapsulated therapeutic cells.

Original languageEnglish (US)
Pages (from-to)867-886
Number of pages20
JournalNature Biomedical Engineering
Volume7
Issue number7
DOIs
StatePublished - Jul 2023

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Medicine (miscellaneous)
  • Biomedical Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Screening hydrogels for antifibrotic properties by implanting cellularly barcoded alginates in mice and a non-human primate'. Together they form a unique fingerprint.

Cite this