Separation and capture of circulating tumor cells from whole blood using a bypass integrated microfluidic trap array

Yousang Yoon, Sunki Cho, Seonil Kim, Eunsuk Choi, Rae Kwon Kim, Su Jae Lee, Onejae Sul, Seung Beck Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

We report on a microfluidic trap array that separates and captures circulating tumor cells (CTCs) from whole blood. The device is a series array of microfluidic branches that utilizes the difference in flow rates between the bypass channel and the trap channel to allow CTCs in whole blood to be separated and trapped. Once a trap has captured a cell with diameter larger than the narrow trap outlet, additional cells arriving at the branch would flow towards the bypass channel due to its lower flow resistance. Results demonstrated that it was possible to capture CTCs from the whole blood of a mouse with full-blown metastasis. With further developments, the bypass integrated microfluidic trap array could become a useful tool for the early prognosis of cancer metastasis.

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4431-4434
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period8/26/148/30/14

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • General Medicine

Fingerprint

Dive into the research topics of 'Separation and capture of circulating tumor cells from whole blood using a bypass integrated microfluidic trap array'. Together they form a unique fingerprint.

Cite this