Sleeping beauty transposon mutagenesis identifies genes driving the initiation and metastasis of uterine leiomyosarcoma

Michiko Kodama, Hiroko Shimura, Jean C. Tien, Justin Y. Newberg, Takahiro Kodama, Zhubo Wei, Roberto Rangel, Kosuke Yoshihara, Airi Kuruma, Aya Nakae, Kae Hashimoto, Kenjiro Sawada, Tadashi Kimura, Nancy A. Jenkins, Neal G. Copeland

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Uterine leiomyosarcoma (ULMS) is a malignancy, which arises from the uterine smooth muscle. Because of its rarity, aggressive nature, and extremely poor prognosis, the molecular mechanisms driving ULMS remain elusive. To identify candidate cancer genes (CCG) driving ULMS, we conducted an in vivo Sleeping Beauty (SB) transposon mutagenesis screen in uterine myometrium-specific, PTEN knockout, KRAS mutant (PTEN KO/KRAS) mice. ULMS quickly developed in SB PTEN KO/KRAS mice, but not in PTEN KO/KRAS mice, demonstrating the critical importance of SB mutagenesis for driving ULMS in this model. Subsequent sequencing of SB insertion sites in these tumors identified 19 ULMS CCGs that were significantly enriched in known cancer genes. Among them, Zfp217 and Sfmbt2 functioned at early stages of tumor initiation and appeared to be oncogenes. Expression of ZNF217, the human homolog of ZFP217, was shown to be elevated in human ULMS compared with paired normal uterine smooth muscle, where it negatively correlated with patient prognosis. Inhibition of ZNF217 suppressed, whereas overexpression induced, proliferation, survival, migration, and stemness of human ULMS. In a second ex vivo ULMS SB metastasis screen, three CCGs were identified that may drive ULMS metastasis to the lung. One of these CCGs, Nrd1 (NRDC in humans), showed stronger expression in human metastatic tumors compared with primary ULMS and negatively associated with patient survival. NRDC knockdown impaired migration and adhesion without affecting cell proliferation, whereas overexpression had the opposite effect. Together, these results reveal novel mechanism driving ULMS tumorigenesis and metastasis and identify ZNF217 and NRDC as potential targets for ULMS therapy.

Original languageEnglish (US)
Pages (from-to)5413-5424
Number of pages12
JournalCancer Research
Volume81
Issue number21
DOIs
StatePublished - Nov 1 2021

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Sleeping beauty transposon mutagenesis identifies genes driving the initiation and metastasis of uterine leiomyosarcoma'. Together they form a unique fingerprint.

Cite this