Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model

Sandra N. Ekdawi, James M.P. Stewart, Michael Dunne, Shawn Stapleton, Nicholas Mitsakakis, Yannan N. Dou, David A. Jaffray, Christine Allen

Research output: Contribution to journalArticlepeer-review

80 Scopus citations

Abstract

Existing paradigms in nano-based drug delivery are currently being challenged. Assessment of bulk tumor accumulation has been routinely considered an indicative measure of nanomedicine potency. However, it is now recognized that the intratumoral distribution of nanomedicines also impacts their therapeutic effect. At this time, our understanding of the relationship between the bulk (i.e., macro-) tumor accumulation of nanocarriers and their intratumoral (i.e., micro-) distribution remains limited. Liposome-based drug formulations, in particular, suffer from diminished efficacy in vivo as a result of transport-limiting properties, combined with the heterogeneous nature of the tumor microenvironment. In this report, we perform a quantitative image-based assessment of macro- and microdistribution of liposomes. Multi-scalar assessment of liposome distribution was enabled by a stable formulation which co-encapsulates an iodinated contrast agent and a near-infrared fluorescence probe, for computed tomography (CT) and optical microscopy, respectively. Spatio-temporal quantification of tumor uptake in orthotopic xenografts was performed using CT at the bulk tissue level, and within defined sub-volumes of the tumor (i.e., rim, periphery and core). Tumor penetration and relative distribution of liposomes were assessed by fluorescence microscopy of whole tumor sections. Microdistribution analysis of whole tumor images exposed a heterogeneous distribution of both liposomes and tumor vasculature. Highest levels of liposome uptake were achieved and maintained in the well-vascularized tumor rim over the study period, corresponding to a positive correlation between liposome and microvascular density. Tumor penetration of liposomes was found to be time-dependent in all regions of the tumor however independent of location in the tumor. Importantly, a multi-scalar comparison of liposome distribution reveals that macro-accumulation in tissues (e.g., blood, whole tumor) may not reflect micro-accumulation levels present within specific regions of the tumor as a function of time.

Original languageEnglish (US)
Pages (from-to)101-111
Number of pages11
JournalJournal of Controlled Release
Volume207
DOIs
StatePublished - Jun 10 2015
Externally publishedYes

Keywords

  • Computed tomography
  • Intratumoral distribution
  • Liposome
  • Nanomedicine
  • Optical microscopy
  • Tumor accumulation

ASJC Scopus subject areas

  • Pharmaceutical Science

Fingerprint

Dive into the research topics of 'Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model'. Together they form a unique fingerprint.

Cite this