Spatial habitats from multiparametric MR imaging are associated with signaling pathway activities and survival in glioblastoma

Katherine Dextraze, Abhijoy Saha, Donnie Kim, Shivali Narang, Michael Lehrer, Anita Rao, Saphal Narang, Dinesh Rao, Salmaan Ahmed, Venkatesh Madhugiri, Clifton David Fuller, Michelle M. Kim, Sunil Krishnan, Ganesh Rao, Arvind Rao

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Glioblastoma (GBM) show significant inter- and intra-tumoral heterogeneity, impacting response to treatment and overall survival time of 12-15 months. To study glioblastoma phenotypic heterogeneity, multi-parametric magnetic resonance images (MRI) of 85 glioblastoma patients from The Cancer Genome Atlas were analyzed to characterize tumor-derived spatial habitats for their relationship with outcome (overall survival) and to identify their molecular correlates (i.e., determine associated tumor signaling pathways correlated with imaging-derived habitat measurements). Tumor sub-regions based on four sequences (fluid attenuated inversion recovery, T1- weighted, post-contrast T1-weighted, and T2-weighted) were defined by automated segmentation. From relative intensity of pixels in the 3-dimensional tumor region, "imaging habitats" were identified and analyzed for their association to clinical and genetic data using survival modeling and Dirichlet regression, respectively. Sixteen distinct tumor sub-regions ("spatial imaging habitats") were derived, and those associated with overall survival (denoted "relevant" habitats) in glioblastoma patients were identified. Dirichlet regression implicated each relevant habitat with unique pathway alterations. Relevant habitats also had some pathways and cellular processes in common, including phosphorylation of STAT-1 and natural killer cell activity, consistent with cancer hallmarks. This work revealed clinical relevance of MRI-derived spatial habitats and their relationship with oncogenic molecular mechanisms in patients with GBM. Characterizing the associations between imagingderived phenotypic measurements with the genomic and molecular characteristics of tumors can enable insights into tumor biology, further enabling the practice of personalized cancer treatment. The analytical framework and workflow demonstrated in this study are inherently scalable to multiple MR sequences.

Original languageEnglish (US)
Pages (from-to)112992-113001
Number of pages10
JournalOncotarget
Volume8
Issue number68
DOIs
StatePublished - 2017

Keywords

  • Dirichlet regression
  • Glioblastoma
  • Image-derived spatial habitat
  • Imaging-genomics analysis
  • Signaling pathway activity

ASJC Scopus subject areas

  • Oncology

Fingerprint

Dive into the research topics of 'Spatial habitats from multiparametric MR imaging are associated with signaling pathway activities and survival in glioblastoma'. Together they form a unique fingerprint.

Cite this