Spinal glia modulate both adaptive and pathological processes

Elisabeth G. Vichaya, Kyle M. Baumbauer, Luis M. Carcoba, James W. Grau, Mary W. Meagher

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Recent research indicates that glial cells control complex functions within the nervous system. For example, it has been shown that glial cells contribute to the development of pathological pain, the process of long-term potentiation, and the formation of memories. These data suggest that glial cell activation exerts both adaptive and pathological effects within the CNS. To extend this line of work, the present study investigated the role of glia in spinal learning and spinal learning deficits using the spinal instrumental learning paradigm. In this paradigm rats are transected at the second thoracic vertebra (T2) and given shock to one hind limb whenever the limb is extended (controllable shock). Over time these subjects exhibit an increase in flexion duration that reduces net shock exposure. However, when spinalized rats are exposed to uncontrollable shock or inflammatory stimuli prior to testing with controllable shock, they exhibit a learning deficit. To examine the role of glial in this paradigm, spinal glial cells were pharmacologically inhibited through the use of fluorocitrate. Our results indicate that glia are involved in the acquisition, but not maintenance, of spinal learning. Furthermore, the data indicate that glial cells are involved in the development of both shock and inflammation-induced learning deficits. These findings are consistent with prior research indicating that glial cells are involved in both adaptive and pathological processes within the spinal cord.

Original languageEnglish (US)
Pages (from-to)969-976
Number of pages8
JournalBrain, behavior, and immunity
Volume23
Issue number7
DOIs
StatePublished - Oct 2009

Keywords

  • Astrocytes
  • Fluorocitrate
  • Inflammation
  • LPS
  • Microglia
  • Pain
  • Recovery of function
  • Spinal cord injury
  • Spinal instrumental learning
  • Spinal plasticity

ASJC Scopus subject areas

  • Immunology
  • Endocrine and Autonomic Systems
  • Behavioral Neuroscience

Fingerprint

Dive into the research topics of 'Spinal glia modulate both adaptive and pathological processes'. Together they form a unique fingerprint.

Cite this