SSTR2-based reporters for assessing gene transfer into non-small cell lung cancer: Evaluation using an intrathoracic mouse model

S. P. Singh, L. Han, R. Murali, L. Solis, J. Roth, L. Ji, I. Wistuba, V. Kundra

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

The most common cause of cancer-related deaths in North America is lung cancer, 85% of which is non-small cell lung cancer (NSCLC). Gene therapy is a promising approach, but has been hindered by lack of methods for localizing and quantifying gene expression in vivo. Human somatostatin receptor subtype-2 (SSTR2)-based reporters can be used to follow gene expression in vivo using ligands with greater affinity for this subtype. NSCLCs can express SSTR subtypes, which may interfere with SSTR2-based reporters. We assessed whether a SSTR2-based reporter can serve as a reporter of gene transfer into NSCLCs. SSTR subtype expression was assessed in NSCLC cell lines A549, H460, and H1299 using RT-PCR. After infection with an adenovirus containing hemagglutinin-A-tagged- SSTR2 (Ad-HA-SSTR2) or control insert, expression was assessed by immunologic techniques and binding to clinically-approved 111In-octreotide. In vivo, after magnetic resonance (MR) imaging, intrathoracic H460 tumors were injected with Ad-HA-SSTR2 or control virus (n=6 mice/group) under ultrasound guidance. Intravenous injection of 111In-octreotide 2 days later was followed by planar and single-photon emission computed tomography (SPECT) imaging. Biodistribution into tumors was assessed in vivo using anatomic MR and functional gamma-camera images and ex vivo using excised organs/tumors. In human lung tumor samples (n=70), SSTR2 expression was assessed using immunohistochemistry. All three NSCLC cell lines expressed different SSTR subtypes, but none expressed SSTR2. Upon Ad-HA-SSTR2 infection, HA-SSTR2 expression was seen in all three cell lines using antibodies targeting the HA domain or 111In-octreotide targeting the receptor domain (p <0.05). Intrathoracic tumors infected with Ad-HA-SSTR2 were clearly visible by gamma-camera imaging; expression was quantified by both in vivo and ex vivo biodistribution analysis and demonstrated greater uptake in tumors infected with Ad-HA-SSTR2 compared with control virus (p <0.05). Immunohistochemistry found that 78% of NSCLCs are negative for and 13% have low levels of SSTR2 expression. It is concluded that SSTR2-based reporters can serve as reporters of gene transfer into NSCLCs.

Original languageEnglish (US)
Pages (from-to)55-64
Number of pages10
JournalHuman gene therapy
Volume22
Issue number1
DOIs
StatePublished - Jan 1 2011

ASJC Scopus subject areas

  • Molecular Medicine
  • Molecular Biology
  • Genetics

MD Anderson CCSG core facilities

  • Small Animal Imaging Facility

Fingerprint

Dive into the research topics of 'SSTR2-based reporters for assessing gene transfer into non-small cell lung cancer: Evaluation using an intrathoracic mouse model'. Together they form a unique fingerprint.

Cite this