Stereochemistry of polypeptide conformation in coarse grained analysis

Anil Korkut, Wayne A. Hendrickson

Research output: Chapter in Book/Report/Conference proceedingChapter

1 Scopus citations

Abstract

The conformations available to polypeptides are determined by the interatomic forces acting on the peptide units, whereby backbone torsion angles are restricted as described by the Ramachandran plot. Although typical proteins are composed predominantly from a-helices and β-sheets, they nevertheless adopt diverse tertiary structure, each folded as dictated by its unique amino-acid sequence. Despite such uniqueness, however, the functioning of many proteins involves changes between quite different conformations. The study of large-scale conformational changes, particularly in large systems, is facilitated by a coarse-grained representation such as provided by virtually bonded Ca atoms. We have developed a virtual atom molecular mechanics (VAMM) force field to describe conformational dynamics in proteins and a VAMM-based algorithm for computing conformational transition pathways. Here we describe the stereochemical analysis of proteins in this coarse-grained representation, comparing the relevant plots in coarse-grained conformational space to the corresponding R8D18Chandran plots, having contoured each at levels determined statistically from residues in a large database. The distributions shown for an all-α protein, two all-β proteins and one α+β protein serve to relate the coarse-grained distributions to the familiar Ramachandran plot.

Original languageEnglish (US)
Title of host publicationBiomolecular Forms and Functions
Subtitle of host publicationA Celebration of 50 Years of the Ramachandran Map
PublisherWorld Scientific Publishing Co.
Pages136-147
Number of pages12
ISBN (Electronic)9789814449144
ISBN (Print)9789814449137
DOIs
StatePublished - Jan 1 2012
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Stereochemistry of polypeptide conformation in coarse grained analysis'. Together they form a unique fingerprint.

Cite this