Targeted imaging of tumor-associated M2 macrophages using a macromolecular contrast agent PG-Gd-NIR813

Marites P. Melancon, Wei Lu, Qian Huang, Prakash Thapa, Dapeng Zhou, Chaan Ng, C. Li Chun

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Tumor-associated macrophages (TAMs) are diverse population containing multiple subtypes. M2 macrophages promote tumor growth and metastasis, in part by secreting a wide range of proangiogenic factors and growth factors. Selective depletion of M2 macrophages has been evaluated as a novel approach to anti-cancer therapy. In this study, a dual magneto-optical imaging probe, PG-Gd-NIR813 was synthesized and evaluated for non-invasive assessment of TAMs after intravenous injection. PG-Gd-NIR813 injected in nude rats bearing C6 tumors showed high uptake of the polymeric contrast agent in the tumor at 1 and 48 h after injection both in vivo and ex vivo optical imaging. T1-weighted MR imaging results showed accumulation of PG-Gd-NIR813 into the tumor necrotic area, which was confirmed by TUNEL staining of resected tumors. The uptake of PG-Gd-NIR813 within tumor necrosis decreased after animals were treated by the macrophage-depleting agent. Immunohistochemical staining demonstrated that PG-Gd-NIR813 colocalized with CD68 (marker for macrophages) and CD169 (marker for activated macrophages), but not with CD163 (residential macrophages). Using combined near-infrared fluorescence imaging and magnetic resonance imaging (MRI), we demonstrated that the accumulation of PG-Gd-NIR813 in tumors was mediated through M2 TAMs. Therefore, poly(l-glutamic acid) based reagents could be potentially used to image response to antitumor therapies targeted at M2 TAMs. Furthermore, poly(l-glutamic acid) is a promising carrier for candidate immunotherapeutics targeting M2 TAMs.

Original languageEnglish (US)
Pages (from-to)6567-6573
Number of pages7
JournalBiomaterials
Volume31
Issue number25
DOIs
StatePublished - Sep 2010

ASJC Scopus subject areas

  • Biophysics
  • Bioengineering
  • Ceramics and Composites
  • Biomaterials
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Targeted imaging of tumor-associated M2 macrophages using a macromolecular contrast agent PG-Gd-NIR813'. Together they form a unique fingerprint.

Cite this