The effect of varying spectral resolution on the quality of high spectral and spatial resolution magnetic resonance images of the breast

Milica Medved, Weiliang Du, Marta A. Zamora, Xiaobing Fan, Olufunmilayo I. Olopade, Peter M. MacEneaney, Gillian Newstead, Gregory S. Karczmar

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Purpose: To evaluate the effect of varying spectral resolution on image quality of high spectral and spatial resolution (HiSS) images. Materials I and Methods: Eight women with suspicious breast lesions and six healthy volunteers were scanned using echo-planar spectroscopic imaging (EPSI) at 1.5 Tesla with 0.75- to 1-mm in-plane resolution and 2.3- to 2.6-Hz spectral resolution. Time domain data were truncated to obtain proton spectra in each voxel with varying (2.6-83.3 Hz) resolution. Images with intensity proportional to water signal peak heights were synthesized. Changes in water signal line shape following contrast injection were analyzed. Results: Fat suppression is optimized at ∼ 10-Hz spectral resolution and is significantly improved by removal of wings of the fat resonance. This was accomplished by subtracting a Lorentzian fit to the fat resonance from the proton spectrum. The water resonance is often inhomogeneously broadened, and very high spectral resolution is necessary to resolve individual components. High spectral resolution is required for optimal contrast in anatomic features with very high T2* (e.g., within a lesion) and for detection of often subtle effects of contrast agents on water signal line shape. Conclusion: Despite a trade-off between the spectral resolution and signal-to-noise ratio, it is beneficial to acquire data at the highest spectral resolution currently attainable at 1.5 Tesla.

Original languageEnglish (US)
Pages (from-to)442-448
Number of pages7
JournalJournal of Magnetic Resonance Imaging
Volume18
Issue number4
DOIs
StatePublished - Oct 1 2003
Externally publishedYes

Keywords

  • Breast
  • Cancer
  • Contrast agent effects
  • Echo-planar spectroscopic imaging
  • Fat suppression
  • High spectral and spatial resolution spectroscopic imaging

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'The effect of varying spectral resolution on the quality of high spectral and spatial resolution magnetic resonance images of the breast'. Together they form a unique fingerprint.

Cite this