The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization

Ryan F. McCormick, Sandra K. Truong, Avinash Sreedasyam, Jerry Jenkins, Shengqiang Shu, David Sims, Megan Kennedy, Mojgan Amirebrahimi, Brock D. Weers, Brian McKinley, Ashley Mattison, Daryl T. Morishige, Jane Grimwood, Jeremy Schmutz, John E. Mullet

Research output: Contribution to journalArticlepeer-review

311 Scopus citations

Abstract

Sorghum bicolor is a drought tolerant C4 grass used for the production of grain, forage, sugar, and lignocellulosic biomass and a genetic model for C4 grasses due to its relatively small genome (approximately 800 Mbp), diploid genetics, diverse germplasm, and colinearity with other C4 grass genomes. In this study, deep sequencing, genetic linkage analysis, and transcriptome data were used to produce and annotate a high-quality reference genome sequence. Reference genome sequence order was improved, 29.6 Mbp of additional sequence was incorporated, the number of genes annotated increased 24% to 34 211, average gene length and N50 increased, and error frequency was reduced 10-fold to 1 per 100 kbp. Subtelomeric repeats with characteristics of Tandem Repeats in Miniature (TRIM) elements were identified at the termini of most chromosomes. Nucleosome occupancy predictions identified nucleosomes positioned immediately downstream of transcription start sites and at different densities across chromosomes. Alignment of more than 50 resequenced genomes from diverse sorghum genotypes to the reference genome identified approximately 7.4 M single nucleotide polymorphisms (SNPs) and 1.9 M indels. Large-scale variant features in euchromatin were identified with periodicities of approximately 25 kbp. A transcriptome atlas of gene expression was constructed from 47 RNA-seq profiles of growing and developed tissues of the major plant organs (roots, leaves, stems, panicles, and seed) collected during the juvenile, vegetative and reproductive phases. Analysis of the transcriptome data indicated that tissue type and protein kinase expression had large influences on transcriptional profile clustering. The updated assembly, annotation, and transcriptome data represent a resource for C4 grass research and crop improvement.

Original languageEnglish (US)
Pages (from-to)338-354
Number of pages17
JournalPlant Journal
Volume93
Issue number2
DOIs
StatePublished - Jan 2018
Externally publishedYes

Keywords

  • discrete Fourier transform
  • gene annotation
  • genetic variation
  • genome assembly
  • kinase
  • nucleosome occupancy
  • reference genome
  • satellite DNA
  • Sorghum bicolor

ASJC Scopus subject areas

  • Genetics
  • Plant Science
  • Cell Biology

Fingerprint

Dive into the research topics of 'The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization'. Together they form a unique fingerprint.

Cite this