The SWI/SNF chromatin-remodeling subunit DPF2 facilitates NRF2-dependent antiinflammatory and antioxidant gene expression

Gloria Mas, Na Man, Yuichiro Nakata, Concepcion Martinez-Caja, Daniel Karl, Felipe Beckedorff, Francesco Tamiro, Chuan Chen, Stephanie Duffort, Hidehiro Itonaga, Adnan K. Mookhtiar, Kranthi Kunkalla, Alfredo M. Valencia, Clayton K. Collings, Cigall Kadoch, Francisco Vega, Scott C. Kogan, Lluis Morey, Daniel Bilbao, Stephen D. Nimer

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

During emergency hematopoiesis, hematopoietic stem cells (HSCs) rapidly proliferate to produce myeloid and lymphoid effector cells, a response that is critical against infection or tissue injury. If unresolved, this process leads to sustained inflammation, which can cause life-threatening diseases and cancer. Here, we identify a role of double PHD fingers 2 (DPF2) in modulating inflammation. DPF2 is a defining subunit of the hematopoiesis-specific BAF (SWI/SNF) chromatin-remodeling complex, and it is mutated in multiple cancers and neurological disorders. We uncovered that hematopoiesis-specific Dpf2-KO mice developed leukopenia, severe anemia, and lethal systemic inflammation characterized by histiocytic and fibrotic tissue infiltration resembling a clinical hyperinflammatory state. Dpf2 loss impaired the polarization of macrophages responsible for tissue repair, induced the unrestrained activation of Th cells, and generated an emergency-like state of HSC hyperproliferation and myeloid cell–biased differentiation. Mechanistically, Dpf2 deficiency resulted in the loss of the BAF catalytic subunit BRG1 from nuclear factor erythroid 2-like 2–controlled (NRF2-controlled) enhancers, impairing the antioxidant and antiinflammatory transcriptional response needed to modulate inflammation. Finally, pharmacological reactivation of NRF2 suppressed the inflammation-mediated phenotypes and lethality of Dpf2Δ/Δ mice. Our work establishes an essential role of the DPF2-BAF complex in licensing NRF2-dependent gene expression in HSCs and immune effector cells to prevent chronic inflammation.

Original languageEnglish (US)
Article numbere158419
JournalJournal of Clinical Investigation
Volume133
Issue number13
DOIs
StatePublished - Jul 3 2023

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'The SWI/SNF chromatin-remodeling subunit DPF2 facilitates NRF2-dependent antiinflammatory and antioxidant gene expression'. Together they form a unique fingerprint.

Cite this