Theranostics with multifunctional magnetic gold nanoshells: Photothermal therapy and T2* magnetic resonance imaging

Marites P. Melancon, Andrew Elliott, Xiaojun Ji, Anil Shetty, Zhi Yang, Mei Tian, Brian Taylor, R. Jason Stafford, Chun Li

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

Objectives: To investigate the multifunctional imaging and therapeutic capabilities of core-shell nanoparticles composed of a superparamagnetic iron oxide (SPIO) core and a gold shell (SPIO@AuNS). Materials and Methods: The magnetic/optical properties of SPIO@AuNS were examined both in an agar gel phantom and in vivo by evaluating contrast-enhanced magnetic resonance imaging (MRI) and by measuring near-infrared (NIR) light-induced temperature changes mediated by SPIO@AuNS. In addition, the biodistribution and pharmacokinetics of In-labeled SPIO@AuNS after intravenous injection in mice bearing A431 tumors were evaluated in the presence and absence of an external magnet. Results: In agar phantoms containing SPIO@AuNS, a significant contrast enhancement in T2-weighted MRI was observed and a linear increase in temperature was observed with increasing concentration and laser output power when irradiated with NIR light centered at an 808 nm. In vivo, T2*-MRI delineated SPIO@AuNS and magnetic resonance temperature imaging of the same tumors revealed significant temperature elevations when intratumorally injected with SPIO@AuNS (1×1011 particles/mouse) and irradiated with NIR light (65.70°C ± 0.69°C vs. 44.23°C ± 0.24°C for saline + laser). Biodistribution studies in mice intravenously injected with 111 In-labeled-SPIO@AuNS(1×1011 particles/mouse) had an approximately 2-fold increase in SPIO@AuNS delivered into tumors in the presence of an external magnet compared with tumors without the magnet. CONCLUSIONS:: Owing to its ability to mediate efficient photothermal ablation of cancer cells under MRI guidance, as well as the ability to be directed to solid tumors with an external magnetic field gradient, multifunctional SPIO@AuNS is a promising theranostic nanoplatform.

Original languageEnglish (US)
Pages (from-to)132-140
Number of pages9
JournalInvestigative radiology
Volume46
Issue number2
DOIs
StatePublished - Feb 2011

Keywords

  • T2* magnetic resonance imaging
  • gold nanoshells
  • photothermal ablation
  • theranostics
  • ultrasmall paramagnetic iron oxide

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

MD Anderson CCSG core facilities

  • Small Animal Imaging Facility

Fingerprint

Dive into the research topics of 'Theranostics with multifunctional magnetic gold nanoshells: Photothermal therapy and T2* magnetic resonance imaging'. Together they form a unique fingerprint.

Cite this