Thickness of molybdenum filter and squared contrast-to-noise ratio per dose for digital mammography

Thomas K. Nishino, Xizeng Wu, Raleigh F. Johnson

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

OBJECTIVE. The objective of our study was to test whether the lesion-tissue contrast-to-noise ratio (CNR) at a given dose level can be improved by increasing the thickness of the molybdenum (Mo) filter currently used in digital mammography. MATERIALS AND METHODS. We studied how the CNR between breast and a 5-mm simulated infiltrating ductal carcinoma (IDC) embedded in a 5-cm-thick breast changes with Mo filter thickness. We performed phantom imaging experiments by modifying the filter wheel of a Senographe 2000D unit with Mo filters that ranged from 15 to 90 μm thickness. A 5-cm-thick 50% glandular-50% adipose breast phantom with a 5-mm insert simulating IDC was used as the phantom for all the cases. The CNRs between the breast phantom and the IDC insert were measured, and average glandular doses were calculated using a filtration-dependent X-ray spectra model and a breast dosimetry model based on a validated Monte Carlo simulation. RESULTS. The lesion-tissue CNR at a given dose level increases with increasing Mo filter thickness from 15 to 90 μm. The measured squared CNR per dose increased by 8%, 14%, 17%, and 17% for 45-, 60-, 75-, and 90-μm Mo filters, respectively, compared with the standard 30-μm Mo filter. Meanwhile, the exposure times were increased by 35% (45 μm), 71% (60 μm), 177% (75 μm), and 229% (90 μm). CONCLUSION. Increasing Mo filter thickness from 30 to 60 μm can increase lesion-tissue squared CNR per dose by 14% with a tolerable increase in the duration of exposure.

Original languageEnglish (US)
Pages (from-to)960-963
Number of pages4
JournalAmerican Journal of Roentgenology
Volume185
Issue number4
DOIs
StatePublished - 2005
Externally publishedYes

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Thickness of molybdenum filter and squared contrast-to-noise ratio per dose for digital mammography'. Together they form a unique fingerprint.

Cite this