Transgenic mice lacking serotonin neurons have severe apnea and high mortality during development

Matthew R. Hodges, Mackenzie Wehner, Jason Aungst, Jeffrey C. Smith, George B. Richerson

Research output: Contribution to journalArticlepeer-review

139 Scopus citations

Abstract

Central serotonin (5-HT) neurons modulate many vital brain functions, including respiratory control. Whether breathing depends critically on 5-HT neurons, or whether their influence is excitatory or inhibitory, remains controversial. Here we show that neonatal Lmx1bflox/flox;ePet-Cre/+ mice (also called Lmx1bf/f/p mice), which selectively lack serotonin neurons, display frequent and severe apnea lasting as long as 55 s. This was associated with a marked decrease in ventilation to less than one-half of normal. These respiratory abnormalities were most severe during the postnatal period, markedly improving by the time the pups were 2-4 weeks old. Despite the severe breathing dysfunction, many of these mice survived, but there was a high perinatal mortality, and those that survived had a decrease in growth rate until the age at which the respiratory defects resolved. Consistent with these in vivo observations, respiratory output was markedly reduced in isolated brainstem-spinal cord preparations from neonatal Lmx1bf/f/p mice and completely blocked in perfused brain preparations from neonatal rats treated with selective antagonists of 5-HT2A and neurokinin 1 (NK-1) receptors. The ventilatory deficits in neonatal Lmx1bf/f/p mice were reversed in vitro and in vivo with agonists of 5-HT2A and/or NK-1 receptors. These results demonstrate that ventilatory output in the neonatal period is critically dependent on serotonin neurons, which provide excitatory drive to the respiratory network via 5-HT2A and NK-1 receptor activation. These findings provide insight into the mechanisms of sudden infant death syndrome, which has been associated with abnormalities of 5-HT neurons and of cardiorespiratory control.

Original languageEnglish (US)
Pages (from-to)10341-10349
Number of pages9
JournalJournal of Neuroscience
Volume29
Issue number33
DOIs
StatePublished - Aug 19 2009
Externally publishedYes

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Transgenic mice lacking serotonin neurons have severe apnea and high mortality during development'. Together they form a unique fingerprint.

Cite this