UMP pyrophosphorylase of Tetrahymena pyriformis. Partial purification and properties

William Plunkett, J. G. Moner

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

UMP pyrophosphorylase (EC 2.4.2.9, UMP:pyrophosphate phosphoribosyltransferase) was purified approximately 85-fold from exponentially growing cells of Tetrahymena pyriformis GL-7. It was found to have a molecular weight of 36,000, and was active over a broad pH range, with an optimum at 7.5. The enzyme exhibited a temperature optimum at 40 °C, above which irreversible inactivation began to occur. The apparent Km values for uracil and phosphoribosyl pyrophosphate (PRPP) were 0.4 and 6.9 m, respectively. The pyrophosphorylase exhibited a pyrimidine base specificity for uracil, although 5-fluorouracil was utilized by the enzyme. Neither cytosine, orotic acid, nor 6-azauracil competed with uracil for the enzyme or inhibited the production of UMP from uracil and PRPP. Although most triphosphates had little effect on pyrophosphorylase activity, UTP and dUTP, each at a concentration of 1 mm, depressed UMP formation by 86 and 59%, respectively. Thus, UMP pyrophosphorylase may be sensitive to feedback inhibition by the product of the pathway it initiates. UMP pyrophosphorylase specific activity in extracts of Tetrahymena grown in a medium containing uracil as the sole pyrimidine source was threefold higher than that in extracts of cells grown on uridine or UMP.

Original languageEnglish (US)
Pages (from-to)264-271
Number of pages8
JournalArchives of Biochemistry and Biophysics
Volume187
Issue number1
DOIs
StatePublished - Apr 15 1978
Externally publishedYes

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Molecular Biology

Fingerprint

Dive into the research topics of 'UMP pyrophosphorylase of Tetrahymena pyriformis. Partial purification and properties'. Together they form a unique fingerprint.

Cite this