Up-regulation of vascular endothelial growth factor in breast cancer cells by the heregulin-β1-activated p38 signaling pathway enhances endothelial cell migration

Shunbin Xiong, Rebecca Grijalva, Lianglin Zhang, Nina T. Nguyen, Peter W. Pisters, Raphael E. Pollock, Dihua Yu

Research output: Contribution to journalArticlepeer-review

92 Scopus citations

Abstract

Heregulin (HRG) belongs to a family of polypeptide growth factors that bind to receptor tyrosine kinases ErbB3 and ErbB4. HRG binding induces ErbB3 and ErbB4 heterodimerization with ErbB2, activating downstream signal transduction. Vascular endothelial growth factor (VEGF) is a primary regulator of physiological angiogenesis and is a major mediator of pathological angiogenesis, such as tumor-associated neovascularization. In this study, we demonstrate that HRG-β1 increased secretion of VEGF from breast cancer cells in a time- and dosage-dependent manner and that this increase resulted from up-regulation of VEGF mRNA expression via transcriptional activation of the VEGF promoter. Deletion and mutational analysis revealed that a CA-rich upstream HRG response element located between nucleotide-2249 and -2242 in the VEGF promoter mediated HRG-induced transcriptional up-regulation of VEGF. While investigating the downstream signaling pathways involved in HRG-mediated up-regulation of VEGF, we found that HRG activated extracellular signal-regulated protein kinases, Akt kinase, and p38 mitogen-activated protein kinase (MAPK). However, only the specific inhibitor of p38 MAPK (SB203580), not extracellular signal-regulated kinase inhibitor PD98059 nor the inhibitor of phosphatidylinositol 3-kinase-Akt pathway (Wortmannin), blocked the up-regulation of VEGF by HRG. The HRG-stimulated secretion of VEGF from breast cancer cells resulted in increased migration of murine lung endothelial cells, an activity that was inhibited by either VEGF-neutralizing antibody or SB203580. These results show that HRG can activate p38 MAPK to enhance VEGF transcription via an upstream HRG response element, leading to increased VEGF secretion and angiogenic response in breast cancer cells.

Original languageEnglish (US)
Pages (from-to)1727-1732
Number of pages6
JournalCancer Research
Volume61
Issue number4
StatePublished - Feb 15 2001

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Up-regulation of vascular endothelial growth factor in breast cancer cells by the heregulin-β1-activated p38 signaling pathway enhances endothelial cell migration'. Together they form a unique fingerprint.

Cite this