USP15-dependent lysosomal pathway controls p53-R175H turnover in ovarian cancer cells

Achuth Padmanabhan, Nicholes Candelaria, Kwong Kwok Wong, Bryan C. Nikolai, David M. Lonard, Bert W. O'Malley, Joanne S. Richards

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

Gain-of-function p53 mutants such as p53-R175H form stable aggregates that accumulate in cells and play important roles in cancer progression. Selective degradation of gain-of-function p53 mutants has emerged as a highly attractive therapeutic strategy to target cancer cells harboring specific p53 mutations. We identified a small molecule called MCB-613 to cause rapid ubiquitination, nuclear export, and degradation of p53-R175H through a lysosome-mediated pathway, leading to catastrophic cancer cell death. In contrast to its effect on the p53-R175H mutant, MCB-613 causes slight stabilization of p53-WT and has weaker effects on other p53 gain-of-function mutants. Using state-of-the-art genetic and chemical approaches, we identified the deubiquitinase USP15 as the mediator of MCB-613's effect on p53-R175H, and established USP15 as a selective upstream regulator of p53-R175H in ovarian cancer cells. These results confirm that distinct pathways regulate the turnover of p53-WT and the different p53 mutants and open new opportunities to selectively target them.

Original languageEnglish (US)
Article number1270
JournalNature communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'USP15-dependent lysosomal pathway controls p53-R175H turnover in ovarian cancer cells'. Together they form a unique fingerprint.

Cite this