Voxel size and gray level normalization of CT radiomic features in lung cancer

Muhammad Shafiq-Ul-Hassan, Kujtim Latifi, Geoffrey Zhang, Ghanim Ullah, Robert Gillies, Eduardo Moros

Research output: Contribution to journalArticlepeer-review

140 Scopus citations

Abstract

Radiomic features are potential imaging biomarkers for therapy response assessment in oncology. However, the robustness of features with respect to imaging parameters is not well established. Previously identified potential imaging biomarkers were found to be intrinsically dependent on voxel size and number of gray levels (GLs) in a recent texture phantom investigation. Here, we validate the voxel size and GL in-phantom normalizations in lung tumors. Eighteen patients with non-small cell lung cancer of varying tumor volumes were analyzed. To compare with patient data, phantom scans were acquired on eight different scanners. Twenty four previously identified features were extracted from lung tumors. The Spearman rank (rs) and interclass correlation coefficient (ICC) were used as metrics. Eight out of 10 features showed high (rs > 0.9) and low (rs < 0.5) correlations with number of voxels before and after normalizations, respectively. Likewise, texture features were unstable (ICC < 0.6) and highly stable (ICC > 0.8) before and after GL normalizations, respectively. We conclude that voxel size and GL normalizations derived from a texture phantom study also apply to lung tumors. This study highlights the importance and utility of investigating the robustness of radiomic features with respect to CT imaging parameters in radiomic phantoms.

Original languageEnglish (US)
Article number10545
JournalScientific reports
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2018
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Voxel size and gray level normalization of CT radiomic features in lung cancer'. Together they form a unique fingerprint.

Cite this