Wnt/β-catenin signaling pathway and thioredoxin-interacting protein (TXNIP) mediate the "glucose sensor" mechanism in metastatic breast cancer-derived cells MDA-MB-231

Sergio Vaira, Ellen Friday, Keith Scott, Steven Conrad, Francesco Turturro

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

In this study we investigated the effect of glucose on GSK3β and β-catenin expression and the involvement of the N-linked glycosylation and hexosamine pathways in the Wnt canonical pathway in response to in vitro conditions resembling normoglycemia (5mmol) and hyperglycemia (20mmol) in the metastatic breast cancer-derived cell line MDA-MB-231. We also investigated the relationship between this circuitry and the thioredoxin-interacting protein (TXNIP) regulation that seems to be related. MDA-MB-231 cells were grown either in 5 or 20mM glucose chronically prior to plating. For glucose shift (5/20), cells were plated in 5mM glucose and shifted to 20mM at time 0. Both protein and mRNA levels for GSK3β but only the protein expression for β-catenin, were increased in response to high glucose. Furthermore, we assessed the response of GSK3β, β-catenin, and TXNIP to inhibition of the N-linked glycosylation, hexosamine, and Wnt pathways. Wnt signaling pathway activation was validated by specific reporter assay. We show that high levels of glucose regulate mRNA and protein expression of GSK3β, and consequently higher levels of activated β-catenin protein, which locates to the nucleus and is associated with increased levels of cyclin D1 expression. This event coincides with increased level of N-terminal Ser 9 phosphorylation of GSK3β protein. The inhibition of both the hexosamine pathway and N-linked glycosylation along with Wnt signaling pathway by sFRP1 and DKK1 is associated with significant decrease of the protein levels of GSK3β, β-catenin, and TXNIP RNA. Our work illuminates a novel and never described before function of this signaling pathway that relates glucose metabolism with redox regulation mechanism.

Original languageEnglish (US)
Pages (from-to)578-586
Number of pages9
JournalJournal of Cellular Physiology
Volume227
Issue number2
DOIs
StatePublished - Jan 2012

ASJC Scopus subject areas

  • Physiology
  • Clinical Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Wnt/β-catenin signaling pathway and thioredoxin-interacting protein (TXNIP) mediate the "glucose sensor" mechanism in metastatic breast cancer-derived cells MDA-MB-231'. Together they form a unique fingerprint.

Cite this