ZEB1 is regulated by K811 acetylation to promote stability, NuRD complex interactions, EMT, and NSCLC metastasis

Mabel Perez-Oquendo, Roxsan Manshouri, Yanhua Tian, Jared J. Fradette, B. Leticia Rodriguez, Samrat T. Kundu, Don L. Gibbons

Research output: Contribution to journalArticlepeer-review

Abstract

Epithelial-to-mesenchymal transition results in loss of specialized epithelial cell contacts and acquisition of mesenchymal invasive capacity. The transcription repressor zinc finger E-box-binding homeobox 1 (ZEB1) binds to E-boxes of gene promoter regions to suppress the expression of epithelial genes. ZEB1 has inconsistent molecular weights, which have been attributed to post-translational modifications (PTMs). We performed mass spectrometry and identified K811 acetylation as a novel PTM in ZEB1. To define the role of ZEB1 acetylation in regulating function, we generated ZEB1 acetyl-mimetic (K811Q) and acetyl-deficient (K811R) mutant-expressing non-small cell lung cancer cell lines (NSCLC). We demonstrate that the K811R ZEB1 (125 kDa) has a shorter protein half-life than wild-type (WT) ZEB1 and K811Q ZEB1 (~225 kDa), suggesting that lack of ZEB1 acetylation in the lower molecular weight form affects protein stability. Further, the acetylated form of ZEB1 recruits the nucleosome remodeling and deacetylase (NuRD) complex to bind the promoter of its target genes mir200c-141 and SEMA3F. RNA-sequencing revealed that WT ZEB1 and K811Q ZEB1 downregulate the expression of epithelial genes to promote lung adenocarcinoma invasion and metastasis, while the K811R ZEB1 does not. Our findings establish that the K811 acetylation promotes ZEB1 protein stability, interaction with other protein complexes, and subsequent invasion/metastasis of lung adenocarcinoma via epithelial-to-mesenchymal transition. Implications: The molecular mechanisms by which ZEB1 is regulated by K811 acetylation to promote protein stability, NuRD complex and promoter interactions, and function are relevant to the development of treatment strategies to prevent and treat metastasis in NSCLC patients.

Original languageEnglish (US)
Pages (from-to)779-794
Number of pages16
JournalMolecular Cancer Research
Volume21
Issue number8
DOIs
StatePublished - Aug 1 2023

ASJC Scopus subject areas

  • General Medicine

MD Anderson CCSG core facilities

  • Research Animal Support Facility
  • Advanced Technology Genomics Core

Fingerprint

Dive into the research topics of 'ZEB1 is regulated by K811 acetylation to promote stability, NuRD complex interactions, EMT, and NSCLC metastasis'. Together they form a unique fingerprint.

Cite this