REV7 counteracts DNA double-strand break resection and affects PARP inhibition

Guotai Xu, J. Ross Chapman, Inger Brandsma, Jingsong Yuan, Martin Mistrik, Peter Bouwman, Jirina Bartkova, Ewa Gogola, Daniël Warmerdam, Marco Barazas, Janneke E. Jaspers, Kenji Watanabe, Mark Pieterse, Ariena Kersbergen, Wendy Sol, Patrick H.N. Celie, Philip C. Schouten, Bram Van Den Broek, Ahmed Salman, Marja NieuwlandIris De Rink, Jorma De Ronde, Kees Jalink, Simon J. Boulton, Junjie Chen, Dik C. Van Gent, Jiri Bartek, Jos Jonkers, Piet Borst, Sven Rottenberg

Research output: Contribution to journalArticlepeer-review

442 Scopus citations

Abstract

Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway. In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with breast or ovarian cancers. Despite the benefit of this tailored therapy, drug resistance can occur by HR restoration. Genetic reversion of BRCA1-inactivating mutations can be the underlying mechanism of drug resistance, but this does not explain resistance in all cases. In particular, little is known about BRCA1-independent restoration of HR. Here we show that loss of REV7 (also known as MAD2L2) in mouse and human cell lines re-establishes CTIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, which is reversed by ATM kinase inhibition. REV7 is recruited to DSBs in a manner dependent on the H2AX-MDC1-RNF8-RNF168-53BP1 chromatin pathway, and seems to block HR and promote end joining in addition to its regulatory role in DNA damage tolerance. Finally, we establish that REV7 blocks DSB resection to promote non-homologous end-joining during immunoglobulin class switch recombination. Our results reveal an unexpected crucial function of REV7 downstream of 53BP1 in coordinating pathological DSB repair pathway choices in BRCA1-deficient cells.

Original languageEnglish (US)
Pages (from-to)541-544
Number of pages4
JournalNature
Volume521
Issue number7553
DOIs
StatePublished - May 28 2015

ASJC Scopus subject areas

  • General

MD Anderson CCSG core facilities

  • Advanced Technology Genomics Core
  • Cytogenetics and Cell Authentication Core

Fingerprint

Dive into the research topics of 'REV7 counteracts DNA double-strand break resection and affects PARP inhibition'. Together they form a unique fingerprint.

Cite this