Time-to-event Bayesian optimal interval design to accelerate phase I trials

Ying Yuan, Ruitao Lin, Daniel Li, Lei Nie, Katherine E. Warren

Research output: Contribution to journalArticlepeer-review

64 Scopus citations

Abstract

Late-onset toxicity is common for novel molecularly targeted agents and immunotherapy. It causes major logistic difficulty for existing adaptive phase I trial designs, which require the observance of toxicity early enough to apply dose-escalation rules for new patients. The same logistic difficulty arises when the accrual is rapid. We propose the time-to-event Bayesian optimal interval (TITE-BOIN) design to accelerate phase I trials by allowing for real-time dose assignment decisions for new patients while some enrolled patients' toxicity data are still pending. Similar to the rolling six design, the TITE-BOIN dose-escalation/ deescalation rule can be tabulated before the trial begins, making it transparent and simple to implement, but is more flexible in choosing the target dose-limiting toxicity (DLT) rate and has higher accuracy to identify the MTD. Compared with the more complicated model-based timeto- event continuous reassessment method (TITE-CRM), the TITE-BOIN has comparable accuracy to identify the MTD but is simpler to implement with substantially better overdose control. As the TITE-CRM is more aggressive in dose escalation, it is less likely to underdose patients. When there are no pending data, the TITE-BOIN seamlessly reduces to the BOIN design. Numerical studies show that the TITE-BOIN design supports continuous accrual without sacrificing patient safety or the accuracy of identifying the MTD, and therefore has great potential to accelerate earlyphase drug development.

Original languageEnglish (US)
Pages (from-to)4921-4930
Number of pages10
JournalClinical Cancer Research
Volume24
Issue number20
DOIs
StatePublished - Oct 15 2018

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

MD Anderson CCSG core facilities

  • Biostatistics Resource Group

Fingerprint

Dive into the research topics of 'Time-to-event Bayesian optimal interval design to accelerate phase I trials'. Together they form a unique fingerprint.

Cite this